Energetic consequences of structural features and dynamics changes upon nucleotide binding to ribonuclease SA: molecular basis for nucleotide binding specificity
نویسنده
چکیده
Proteins are often able to distinguish between closely related ligands, thus achieving specificity. A major goal in biophysical chemistry is to understand the molecular basis for protein-ligand recognition. This level of understanding is necessary for developing methods to accurately predict protein-ligand binding energetics from structural data. The goal of this thesis was to identify features of protein-ligand interactions that may not be adequately accounted for in structure energetics calculations in order to improve our ability to predict binding energetics for these interactions. Specifically, the features of protein-nucleotide binding were studied using the small, guanine-specific ribonuclease, RNase Sa binding to two closely related nucleotide inhibitors, guanosine-3’-monophosphate (3’GMP) and inosine-3’-monophosphate (3’IMP) as a model system. Comparing the binding of these two inhibitors using isothermal titration calorimetry (ITC), x-ray crystallography, NMR and molecular dynamics (MD) simulations has revealed important determinants of guanine base recognition by proteins, specifically the role of the exocyclic amino group (N2) of the guanine base. Importantly, due to the high conservation of guanine binding sites in proteins, the observations for RNase Sa can potentially be extended to other systems. In addition, RNase Sa has provided a well-defined system for the investigation of changes in heat capacity and changes in backbone dynamics upon ligand binding. All of the data presented here support the idea that fluctuations in protein structure can contribute significantly to protein-nucleotide binding energetics even for an apparently rigid-body interaction. These fluctuations make a significant contribution to the enthalpy, entropy, and heat capacity changes associated with the RNase Sa-nucleotide interaction. This implies that fast time-scale motions must be accounted for to optimize structure-based calculations for protein-nucleotide binding. The use of molecular dynamics simulations is
منابع مشابه
Molecular dynamics simulation and docking studies on the binding properties of several anticancer drugs to human serum albumin
Disposition and transportation of anticancer drugs by human serum albumin (HSA) affects their bioavailability, distribution and elimination. In this study, the interaction of a set of anticancer drugs with HSA was investigated by molecular dynamics and molecular docking simulations. The drugs' activities were analyzed according to their docking scores, binding sites and structural descriptors. ...
متن کاملPutative Binding Sites of Dopamine and Arachidonoyl Dopamine to Beta-lactoglobulin: A Molecular Docking and Molecular Dynamics Study
Because of participation in many aspects of human life, and due to oxidation-sensitive characteristics of dopamine (DA) and arachidonoyl dopamine (AA-DA), the necessity of biocompatible carrier to keep them against oxidation is of importance. In this work, we explored the putative binding sites of DA and AA-DA to -lactoglobulin (BLG) as potent carrier. Docking results identified the binding si...
متن کاملIsothermal Titration Calorimetry and Molecular Dynamics Simulation Studies on the Binding of Indometacin with Human Serum Albumin
Human serum albumin (HSA) is the most abundant protein in the blood plasma. Drug binding to HSA is crucial to study the absorption, distribution, metabolism, efficiency and bioavailability of drug molecules. In this study, isothermal titration calorimetry and molecular dynamics simulation of HSA and its complex with indometacin (IM) were performed to investigate thermodynamics parameters and th...
متن کاملInvestigation the Mechanism of Interaction between Inhibitor ALISERTIB with Protein Kinase A and B Using Modeling, Docking and Molecular Dynamics Simulation
The high level of conservation in ATP-binding sites of protein kinases increasingly demandsthe quest to find selective inhibitors with little cross reactivity. Kinase kinases are a recently discovered group of Kinases found to be involved in several mitotic events. These proteins represent attractive targets for cancer therapy with several small molecule inhibitors undergoing different ph...
متن کاملDecrypting the structural, dynamic, and energetic basis of a monomeric kinesin interacting with a tubulin dimer in three ATPase states by all-atom molecular dynamics simulation.
We have employed molecular dynamics (MD) simulation to investigate, with atomic details, the structural dynamics and energetics of three major ATPase states (ADP, APO, and ATP state) of a human kinesin-1 monomer in complex with a tubulin dimer. Starting from a recently solved crystal structure of ATP-like kinesin-tubulin complex by the Knossow lab, we have used flexible fitting of cryo-electron...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015